Emmanuel Torsen https://orcid.org/0000-0002-6517-9668 , Umar Muhammad Modibbo https://orcid.org/0000-0002-9242-4948 , Mohammed Mijinyawa https://orcid.org/0000-0002-7248-3561 , Lema Logamou Seknewna https://orcid.org/0000-0002-2233-463X , Irfan Ali https://orcid.org/0000-0002-1790-5450

© E. Torsen, U. M. Modibbo, M. Mijinyawa, L. L. Seknewna, I. Ali. Article available under the CC BY-SA 4.0

ARTICLE

(English) PDF

ABSTRACT

One of the most significant disruptive events of the 21st century was the COVID-19 epidemic, which was first detected in China in 2019 and quickly spread around the world. While waiting for the development of the vaccine, governments used a variety of strategies to counteract the effects of the pandemic: from simple personal hygiene advice to the introduction of strict lockdowns. In this paper, the confirmed cases of COVID-19 fatalities (count data and having zero inflation) due to COVID-19 in Nigeria modeled using univariate time series models. To describe the attributes of COVID-19 fatalities in Nigeria with zero inflation, the autoregressive integrated moving average (ARIMA), zero-inflated poison autoregressive (ZIPAR), and zero-inflated negative binomial autoregressive (ZINBAR) models were used. Our findings indicate that ZINBAR(1) having the lowest root mean square error (RMSE), the Akaike information criterion (AIC), and the Bayesian information criterion (BIC) outperforms the other two models: Hence, the ZINBAR(1) performs better than the ZIPAR(1) (this is in aggrement with the work of Tawiah et al. (2021)) and the ARIMA(0,1,1). This demonstrates and emphasised the fact that for count time series data, count time series models should be used. Hence, the ZINBAR(1) can be use to predict and forecast COVID-19 in Nigeria.

KEYWORDS

ARIMA, Covid-19, Nigeria, Modeling, ZINBAR, ZINPAR.

REFERENCES

Abdelaziz, M., Ahmed, A., Riad, A., Abderrezak, G. and Djida, A. A., (2020). Forecasting daily confirmed COVID-19 cases in Algeria using ARIMA models. MedRxiv, pp. 2020–12.

Abiodun, G. J., Makinde, O. S., Adeola, A. M., Njabo, K. Y., Witbooi, P. J., Djidjou- Demasse, R. and Botai, J. O., (2019). A dynamical and zero-inflated negative binomial regression modelling of malaria incidence in Limpopo province, South Africa. International Journal of Environmental Research and Public Health, 16(11)–2000.

Adams, S. O., Somto, G., (2022). Comparative study of the error trend and seasonal exponential smoothing and ARIMA model using COVID-19 death rate in Nigeria. International Journal of Epidemiology and Health Sciences, 3(9).

Adesina, O. S., Onanaye, S. A., Okewole, D. and Egere, A. C., (2020). Forecasting of new cases of COVID-19 in Nigeria using autoregressive fractionally integrated moving average models. Asian Res. J. Math, pp. 135–146.

Agboola, S., Niyang, P., Olawepo, O., Ukponu, W., Niyang, S., Ujata, I., Ihueze, A., Ibrahim, R., Shallangwa, J., Adamu, H. et al., (2021). Forecasting the spread and total size of confirmed and discharged cases of COVID-19 in Nigeria using an ARIMA model. Statistical Journal of the IAOS, 37(2), pp. 517–522.

Alabdulrazzaq, H., Alenezi, M., Rawajfih, Y., Alghannam, B., Al-Hassan, A. and Al-Anzi, F., (2021). On the accuracy of ARIMA based prediction of COVID-19 spread. Results phys, 27, p. 104509.

Ali, I., Charles, V., Modibbo, U. M., Gherman, T. and Gupta, S., (2023). Navigating COVID-19: unraveling supply chain disruptions through best-worst method and fuzzy topsis. Benchmarking: An International Journal, 2023.

Argawu, A. S., (2021). Time series models for covid-19 new cases in top seven infected African countries. Journal of Pharmaceutical Research International, 33(60B), pp. 983–992.

Aronu, C. O., Ekwueme, G. O., Sol-Akubude, V. I. and Okafor, P. N., (2021). Coronavirus (COVID-19) in Nigeria: survival rate. Scientific African, 11, p. e00689.

ArunKumar, K., Kalaga, D. V., Kumar, C. M. S., Chilkoor, G., Kawaji, M. and Brenza, T. M., (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-regressive integrated moving average (ARIMA) and seasonal auto-regressive integrated moving average (SARIMA). Applied soft computing, 103, p. 107161.

Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L. and Wang, M., (2020). Presumed asymptomatic carrier transmission of COVID-19. Jama, 323(14), pp. 1406–1407.

Busari, S., Samson, T. (2022). Modelling and forecasting new cases of COVID-19 in Nigeria: Comparison of regression, ARIMA and machine learning models. Scientific African, 18, p. e01404.

Chaurasia, V., Pal, S., (2020). COVID-19 pandemic: Arima and regression model-based worldwide death cases predictions. SN Computer Science, 1(5), p. 288.

Chyon, F. A., Suman, M. N. H., Fahim, M. R. I. and Ahmed, M. S., (2022). Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning. Journal of Virological Methods, 301, p. 114433.

Didi, E. I., Kingdom, N. and Harrison, E. E., (2021). ARIMA modelling and forecasting of COVID-19 daily confirmed/death cases: a case study of Nigeria. Asian Journal of Probability and Statistics, 12(3), pp. 59–80.

Dunford, D., Dale, B., Stylianou, N., Lowther, E., Ahmed, M. and de la Torre Arenas, I., (2020). Coronavirus: The world in lockdown in maps and charts. BBC News, 9, p. 462.

Ibrahim, R. R., Oladipo, H. O., (2020). Forecasting the spread of COVID-19 in Nigeria using Box-Jenkins modeling procedure. MedRxiv, pp. 2020–05.

Inegbedion, H. E., (2023). A time series forecast of COVID-19 infections, recoveries and fatalities in Nigeria. Sustainability, 15(9), p. 7324.

Khan, F. M., Gupta, R., (2020). ARIMA and NAR based prediction model for time series analysis of COVID-19 cases in India. Journal of Safety Science and Resilience, 1(1), pp. 12–18.

Kucharski, A. J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D. et al., (2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The lancet infectious diseases, 20(5), pp. 553–558.

Kumar, N., Susan, S., (2020). COVID-19 pandemic prediction using time series forecasting models. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7.

Li, C., Sampene, A. K., Agyeman, F. O., Robert, B. and Ayisi, A. L., (2022). Forecasting the severity of COVID-19 pandemic amidst the emerging SARS-COV-2 variants: adoption of ARIMA model. Computational and Mathematical Methods in Medicine.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong, J. Y. et al., (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine.

Lukman, A. F., Rauf, R. I., Abiodun, O., Oludoun, O., Ayinde, K. and Ogundokun, R. O., (2020). COVID-19 prevalence estimation: Four most affected African countries. Infectious Disease Modeling, 5, pp. 827–838.

Malki, Z., Atlam, E.-S., Ewis, A., Dagnew, G., Alzighaibi, A. R., ELmarhomy, G., Elhosseini, M. A., Hassanien, A. E. and Gad, I., (2021). ARIMA models for predicting the end of COVID-19 pandemic and the risk of second rebound. Neural Computing and Applications, 33, pp. 2929–2948.

Modibbo, U. M., Arshad, M., Abdalghani, O. and Ali, I., (2021). Optimization and estimation in system reliability allocation problem. Reliability Engineering & System Safety, 212, p. 107620.

Nguyen, Q. D., Le Phuong, T., Dinh, T. N. Q., Le Thanh, B., Cao, T. A. L. and Phung, T. H. D., (2020). Predicting the pandemic covid-19 using ARIMA model. VNU Journal of Science: Mathematics-Physics, 36(4).

Nwafor, G. O., Iwu, H. C. and Anyasodo, U. N., (2022). Transfer function modeling of COVID-19 pandemic in Nigeria. Journal of the Nigerian Statistical Association, Vol. 34.

Odekina, G. O., Adedotun, A. F. and Imaga, O. F. (2022). Modeling and forecasting the third wave of COVID-19 incidence rate in Nigeria using vector autoregressive model approach. Journal of the Nigerian Society of Physical Sciences, pp. 117–122.

Oduntan, E. A., Ajayi, O. O., (2023). ARIMA forecast of Nigerian inflation rates with COVID-19 pandemic event in focus. Theoretical & Applied Economics, 30(4).

Ogbuagada, S., Okolo, A., Torsen, E. and John, O., (2022). Multivariate time series analysis in modeling Malaria cases in Jimeta metropolis of Adamawa State, Nigeria. FUDMA Journal of Sciences, 6(3), pp. 62–69.

Olarenwaju, B. A., Harrison, I. U., (2020). Modeling of COVID-19 cases of selected states in Nigeria using linear and non-linear prediction models. Journal of Computer Sciences Institute, 17, pp. 390–395.

Organization, W. H. et al., (2020). Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva: World Health Organization; 2020. Google Scholar, pp. 1–40.

Ortese, C., Ieren, T. and Tamber, A., (2021). A time series model to forecast COVID- 19 infection rate in Nigeria using Box-Jenkins method. Nigerian Annals of Pure and Applied Sciences, 4(1), pp. 75–85.

Poleneni, V., Rao, J. K. and Hidayathulla, S. A., (2021). COVID-19 prediction using ARIMA model. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 860–865. IEEE.

Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., and dos Santos Coelho, L., (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons & Fractals, 135, p. 109853.

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P. and Chowell, G., (2020). Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infectious Disease Modeling, 5, pp. 256–263.

Sah, S., Surendiran, B., Dhanalakshmi, R., Mohanty, S. N., Alenezi, F., Polat, K. et al., (2022). Forecasting COVID-19 pandemic using prophet, ARIMA, and hybrid stacked lstm-gru models in India. Computational and Mathematical Methods in Medicine, 2022.

Sam, S. O., (2020). Exploring the statistical significance of Africa COVID-19 data. International Journal of Statistics and Applied Mathematics, 5(4), pp. 34–42.

Samson, T. K., Ogunlaran, O. M. and Raimi, M. O., (2020). A predictive model for confirmed cases of COVID-19 in Nigeria. European Journal of Applied Sciences (EJAS), Vol. 8, No. 4, pp 1–10.

Shoko, C., Njuho, P., (2023). ARIMA model in predicting of COVID-19 epidemic for the Southern Africa region. African Journal of Infectious Diseases, 17(1), pp. 1–9.

Somyanonthanakul, R., Warin, K., Amasiri, W., Mairiang, K., Mingmalairak, C., Panichkitkosolkul, W., Silanun, K., Theeramunkong, T., Nitikraipot, S. and Suebnukarn, S., (2022). Forecasting COVID-19 cases using time series modeling and association rule mining. BMC Medical Research Methodology, 22(1), p. 281.

Suleiman, S., Sani, M., (2021). Application of ARIMA and artificial neural networks models for daily cumulative confirmed COVID-19 prediction in Nigeria. Equity Journal of Science and Technology, 7(2), pp. 83–83.

Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y. and Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-NCOV). Infectious disease modeling, 5, pp. 248–255.

Tawiah, K., Iddrisu, W. A. and Asampana, A. K., (2021). Zero-inflated time series modelling of COVID-19 deaths in Ghana. Journal of Environmental and Public Health.

Team, E., (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC weekly, 2(8), p.113.

Yang, M., (2012). Statistical models for count time series with excess zeros [PhD (doctor of philosophy) Thesis]. University of Iowa.

Yang, M., Zamba, G. K. and Cavanaugh, J. E., (2013). Markov regression models for count time series with excess zeros: A partial likelihood approach. Statistical Methodology, 14, pp. 26–38.

Yang, Q., Wang, J., Ma, H. and Wang, X., (2020). Research on covid-19 based on ARIMA model ?—taking Hubei, China as an example to see the epidemic in Italy. Journal of infection and public health, 13(10), pp. 1415–1418.

Zhihao, L., Junpei, W., Xiaoliang, Z. and Huijun, N., (2021). Research on covid-19 epidemic based on on ARIMA model. In Journal of Physics: Conference Series, Vol. 2012, pp. 012-063. IOP Publishing, 17.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0